4.8 Article

Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity

Journal

CHEMICAL SCIENCE
Volume 2, Issue 3, Pages 531-539

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0sc00489h

Keywords

-

Funding

  1. NSFC [20620130427]
  2. MOST [2007DFC40440]
  3. 973 Program [2009CB930703, 2007CB815303]
  4. ENS
  5. CNRS (UMR, LIA XiamENS) [8640]

Ask authors/readers for more resources

We have rationally synthesized and optimized catalytic nanoparticles consisting of a gold core, covered by a palladium shell, onto which platinum clusters are deposited (Au@Pd@Pt NPs). The amount of Pt and Pd used is extremely small, yet they show unusually high activity for electrooxidation of formic acid. The optimized structure has only 2 atomic layers of Pd and a half-monolayer equivalent of Pt (theta(Pt) approximate to 0.5) but a further increase in the loading of Pd or Pt will actually reduce catalytic activity, inferring that a synergistic effect exists between the three different nanostructure components (sphere, shell and islands). A combined electrochemical, surface-enhanced Raman scattering (SERS) and density functional theory (DFT) study of formic acid and CO oxidation reveals that our core-shell-cluster trimetallic nanostructure has some unique electronic and morphological properties, and that it could be the first in a new family of nanocatalysts possessing unusually high chemical reactivity. Our results are immediately applicable to the design of catalysts for direct formic acid fuel cells (DFAFCs).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available