4.6 Article

Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 3, Issue 30, Pages 6310-6326

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tb00904a

Keywords

-

Funding

  1. National Natural Science Foundation of China [81273451, 81101684]

Ask authors/readers for more resources

As one of the most frequently used chemotherapeutic drugs, doxorubicin (DOX) is accompanied by low accumulation in tumors and severe dose-limiting side effects with systemic administration, which limits its therapeutic index. In this work, a novel and injectable in situ photo-sensitive inorganic/organic hybrid hydrogel as a localized drug-delivery system was examined. It explored poly(ethylene glycol) double acrylates (PEGDA) as a polymeric matrix, DOX as a model drug, a TiO2@MWCNT nanocomposite as the photoinitiator and photosensitizer-photothermal agent for tumor therapy possessing a multi-mechanism using a single NIR laser. Briefly, a PEGDA solution containing DOX and TiO2@MWCNTs was injected into a tumor and rapidly gelled in vivo via a photo-crosslinking action triggered by a NIR laser. DOX release from the DOX/TiO2@MWCNTs/PEGDA hydrogel was sustained and long-lasting, over 10 days, indicating that the PEGDA gel acted as a drug depot. Simultaneously, a NIR laser light was adopted which can be absorbed and converted into reactive oxygen species (ROS) or local hyperthermia by TiO2@MWCNTs, leading to tumor cell death. This DOX/TiO2@MWCNTs/PEGDA hydrogel exhibited remarkable anti-proliferative activities against MCF-7 cancer cells in vitro. Experiments in vivo showed that a single intratumoral injection of this hydrogel with 808 nm laser irradiation was the most effective among all DOX formulations in the tumor-bearing mice models. There was a relatively small DOX distribution in normal tissues and much lower systemic toxicity than the control group (DOX-only). In general, it is believed that the novel photo-sensitive hybrid hydrogel system prepared in this study can afford high drug-loading, sustained and stable drug release, as well as repeated phototherapy of the tumor with the administration of a single dose.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available