4.6 Article

Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 15, Pages 7727-7731

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta06323f

Keywords

-

Funding

  1. National Science Foundation of China [21306060]
  2. Program for New Century Excellent Talents in Universities of China [NCET-13-0237]
  3. Doctoral Fund of Ministry of Education of China [20130142120039]
  4. Fundamental Research Funds for the Central University [2013TS136, 2014YQ009]
  5. U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]

Ask authors/readers for more resources

A carbon black incorporated nitrogen and sulfur co-doped graphene (NSGCB) nanocomposite has been synthesized through one-pot annealing of a precursor mixture containing graphene oxide, thiourea, and acidized carbon black (CB). The NSGCB shows excellent performance for the oxygen reduction reaction (ORR) with the onset and half-wave potentials at 0.96 V and 0.81 V (vs. RHE), respectively, which are significantly higher compared to those of the catalysts derived from only graphene (0.90 V and 0.76 V) or carbon nanospheres (0.82 V and 0.74 V). The enhanced catalytic activity of the NSGCB electrode could be attributed to the synergistic effect of N/S co-doping and the enlarged interlayer space resulted from the insertion of carbon nanospheres into the graphene sheets. The four-electron selectivity and the limiting current density of the NSGCB nanocomposite are comparable to those of the commercial Pt/C catalyst. Furthermore, the NSGCB nanocomposite is superior to Pt/C in terms of long-term durability and tolerance to methanol poisoning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available