4.6 Article

Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 35, Pages 18154-18162

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta04721h

Keywords

-

Funding

  1. national Natural Science Foundation of China [21406056]

Ask authors/readers for more resources

Corn husk, a renewable biomass, has been successfully explored as a low-cost crude carbon source to prepare advanced higher-value 3D HPCs by means of KOH pre-treatment and direct pyrolysis, the synthesis route is simple, self-templating and easy to scale-up for industrialization. The CHHPCs present many advantages for supercapacitor applications, including higher surface area (928 m(2) g(-1)), hierarchical porosity consisting of macro, meso, and micropores, a turbostratic carbon structure, uniform pore size, 3D architecture and rich O-doping (17.1 wt%). The supercapacitor performance of CHHPCs was evaluated in a 6 M KOH electrolyte and 1 M Na2SO4 electrolyte. The CHHPCs exhibit a high specific capacitance of 356 F g(-1) and 300 F g(-1) at 1 A g(-1), 20 A g(-1), respectively, ultra-high rate capability with 88% retention rate from 1 to 10 A g(-1) and outstanding cycling stability with 95% capacitance retention after 2500 cycles. The CHHPCs symmetric supercapacitor display a high energy density of 21 W h kg(-1) at a power density of 875 W kg(-1) and retains as high as 11 W h kg(-1) at 5600 W kg(-1) in 1 M Na2SO4 electrolyte. The facile, efficient and template-free synthesis strategy for novel 3D-HPCs from biomass sources may promote commercial application of 3D-HPCs in the fields of supercapacitors, lithium ion batteries, fuel cells and sorbents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available