4.6 Article

Scalable synthesis of highly dispersed silicon nanospheres by RF thermal plasma and their use as anode materials for high-performance Li-ion batteries

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 35, Pages 18136-18145

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta04620c

Keywords

-

Ask authors/readers for more resources

Si nanospheres (SiNSs) have been synthesized via a simple, continuous and one-step way by using a radio frequency (RF) thermal plasma system on a large-scale. The synthesized SiNSs display a perfect spherical shape with a smooth surface and good dispersity. By a simple ball-milling post-processing, silicon nanosphere/porous carbon (SiNS/PC) composites with synthesized Si nanospheres uniformly dispersed in the carbon matrix have been prepared, and the composite particles have a core/shell structure (i.e., every Si nanosphere is well covered by the complete porous carbon shell). As anodes for Li-ion batteries, the prepared composite materials could maintain microstructural stability after cycles and exhibit remarkably improved electrochemical performance with large storage capacity, super cycling stability and high rate capability. These desirable electrochemical performances are attributed to the unique structure of the SiNS/PC composite, which has a high capacity Si core with a nanosphere morphology to alleviate the inner volume changes, and a porous shell acting as a conductive matrix to enhance the conductivity, accommodate the silicon volume expansion, and facilitate lithium-ion transportation during charging-discharging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available