4.6 Article

Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 25, Pages 13203-13209

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta02381e

Keywords

-

Ask authors/readers for more resources

Cobalt/nickel nanoparticles attached to single-walled carbon nanotubes (Co/Ni@SWCNTs) were prepared by dc-arc discharge technique. Co/Ni@SWCNTs were characterized by scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and energy dispersive X-ray analysis techniques. HRTEM results confirmed attachment of magnetic nanoparticles onto SWCNTs having 1.2 nm diameter. A microwave shielding effectiveness value of 24 dB (blocking >99% radiation) by a 1.5 mm thick sample in the frequency range of 12.4-18 GHz was observed. In order to understand the mechanism of shielding, dielectric andmagnetic attributes of the shielding effectiveness of Co/Ni@SWCNTs have been evaluated. Eddy currents and natural resonances due to the presence of magnetic nanoparticles, electronic polarization and their relaxation, interfacial polarization and unique composition of the shield contributed significantly in achieving good shielding effectiveness. The observed microwave shielding crossed the limit required for commercial applications which suggests that these nanocomposites are promising microwave shielding materials in the Ku band.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available