4.6 Article

Insight into the electrochemical behavior of micrometric Bi and Mg3Bi2 as high performance negative electrodes for Mg batteries

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 32, Pages 16478-16485

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta04077a

Keywords

-

Funding

  1. Cellule Energie CNRS
  2. Region Languedoc Roussillon

Ask authors/readers for more resources

The electrochemical behavior of micrometric Bi powder as an active electrode material for Mg batteries is revisited in a half-cell with Mg metal as the counter electrode and organohaloaluminate-based complex electrolyte. A complete biphasic domain is evidenced from Bi to its Mg-alloyed counterpart Mg3Bi2. Operando X-ray diffraction underlines a simple mechanism that does not imply any intermediate phases or amorphization process. The high performances of Bi-based electrodes are confirmed using an optimized electrode formulation, with specific capacity nearing the theoretical value of 385 mA h g(-1) at low rates. The capacity fading appears limited when moving to high current densities. In parallel, a micrometric Mg3Bi2 intermetallic compound obtained by high-energy ball-milling exhibits a similar electrochemical behavior. As a proof-of-concept as-prepared Mg3Bi2 is directly associated with a Chevrel-type positive electrode and successfully tested as a complete Mg-ion battery. Despite the high molar mass, the couple Bi/Mg3Bi2 can be considered as a reliable negative electrode candidate and a reference system for testing the next generation of Mg-ion battery electrolytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available