4.6 Article

Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 10, Pages 5385-5391

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta06856d

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division

Ask authors/readers for more resources

Li-rich layered oxides hold great promise for improving the energy density of present-day Li-ion batteries. Their application is, however, limited by the voltage decay upon cycling, and the origin of such a phenomenon is poorly understood. A major issue is determining the voltage range over which detrimental reactions originate. In the present study, a unique yet effective approach was employed to probe this issue. Instead of studying the materials during the first cycle, electrochemical behavior and evolution of the atomic structures were compared in extensively cycled specimens under varied charge/discharge voltages. With the upper cutoff voltage lowered from 4.8 to 4.4 V, the voltage decay ceased to occur even after 60 cycles. In the meantime, the material maintained its layered structure without any spinel phase emerging at the surface, which is unambiguously shown by the atomic-resolution Z-contrast imaging and electron energy loss spectroscopy. These results have conclusively demonstrated that structural/chemical changes responsible for the voltage decay began between 4.4 and 4.8 V, where the layered-to-spinel transition was the most dramatic structural change observed. This discovery lays important groundwork for the mechanistic understanding of the voltage decay in Li-rich layered cathode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available