4.6 Article

Lithium transport through lithium-ion battery cathode coatings

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 33, Pages 17248-17272

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta01664a

Keywords

-

Funding

  1. Dow Chemical Company
  2. National Science Foundation [OCI-1053575]

Ask authors/readers for more resources

The surface coating of cathodes using insulator films has proven to be a promising method for high-voltage cathode stabilization in Li-ion batteries, but there is still substantial uncertainty about how these films function. More specifically, there is limited knowledge of lithium solubility and transport through the films, which is important for coating design and development. This study uses first-principles calculations based on density functional theory to examine the diffusivity of interstitial lithium in the crystals of alpha-AlF3, alpha-Al2O3, m-ZrO2, c-MgO, and alpha-quartz SiO2, which provide benchmark cases for further understanding of insulator coatings in general. In addition, we propose an ohmic electrolyte model to predict resistivities and overpotential contributions under battery operating conditions. For the crystalline materials considered we predict that Li+ diffuses quite slowly, with a migration barrier larger than 0.9 eV in all crystalline materials except alpha-quartz SiO2, which is predicted to have a migration barrier of 0.276 eV along < 001 >. These results suggest that the stable crystalline forms of these insulator materials, except for oriented alpha-quartz SiO2, are not practical for conformal cathode coatings. Amorphous Al2O3 and AlF3 have higher Li+ diffusivities than their crystalline counterparts. Our predicted amorphous Al2O3 resistivity (1789 M Omega m) is close to the top of the range of the fitted resistivities extracted from previous experiments on nominal Al2O3 coatings (7.8 to 913 M Omega m) while our predicted amorphous AlF3 resistivity (114 M Omega m) is very close to the middle of the range. These comparisons support our framework for modeling and understanding the impact on overpotential of conformal coatings in terms of their fundamental thermodynamic and kinetic properties, and support that these materials can provide practical conformal coatings in their amorphous form.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available