4.5 Review Book Chapter

Entangled Polymer Dynamics in Equilibrium and Flow Modeled Through Slip Links

Publisher

ANNUAL REVIEWS
DOI: 10.1146/annurev-chembioeng-060713-040252

Keywords

multiscale modeling; coarse graining; polymer dynamics; rheology; molecular modeling

Ask authors/readers for more resources

The idea that the dynamics of concentrated, high-molecular weight polymers are largely governed by entanglements is now widely accepted and typically understood through the tube model. Here we review alternative approaches, slip-link models, that share some similarities to and offer some advantages over tube models. Although slip links were proposed at the same time as tubes, only recently have detailed, quantitative mathematical models arisen based on this picture. In this review, we focus on these models, with most discussion limited to mathematically well-defined objects that conform to state-of-the-art beyond-equilibrium thermodynamics. These models are connected to each other through successive coarse graining, using nonequilibrium thermodynamics along the way, and with a minimal parameter set. In particular, the most detailed level of description has four parameters, three of which can be determined directly from atomistic simulations. Once the remaining parameter is determined for any system, all parameters for all members of the hierarchy are determined. We show how, using this hierarchy of slip-link models combined with atomistic simulations, we can make predictions about the nonlinear rheology of monodisperse homopolymer melts, polydisperse melts, or blends of different architectures. Mathematical details are given elsewhere, so these are limited here, and physical ideas are emphasized. We conclude with an outlook on remaining challenges that might be tackled successfully using this approach, including complex flow fields and polymer blends.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available