4.6 Article

Generation of Cu-In alloy surfaces from CuInO2 as selective catalytic sites for CO2 electroreduction

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 37, Pages 19085-19092

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta05669a

Keywords

-

Funding

  1. King Abdullah University of Science and Technology (KAUST)

Ask authors/readers for more resources

The lack of availability of efficient, selective and stable electrocatalysts is a major hindrance for scalable CO2 reduction processes. Herein, we report the generation of Cu-In alloy surfaces for electrochemical reduction of CO2 from mixed metal oxides of CuInO2 as the starting material. The material successfully generates selective active sites to form CO from CO2 electroreduction at mild overpotentials. Density functional theory (DFT) indicates that the site occupation of the inert In occurs more on the specific sites of Cu. In addition, while In atoms do not preferentially adsorb H or CO, Cu atoms, which neighbor the In atoms, alters the preference of their adsorption. This preference for site occupation and altered adsorption may account for the improved selectivity over that observed for Cu metal. This study demonstrates an example of a scalable synthesis method of bimetallic surfaces utilized with the mixed oxide precursor having the diversity of metal choice, which may drastically alter the electrocatalytic performance, as presented herein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available