4.5 Article

Ultrafast Laser Pulses to Detect and Generate Fast Thermomechanical Transients in Matter

Journal

IEEE PHOTONICS JOURNAL
Volume 1, Issue 1, Pages 21-32

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JPHOT.2009.2025050

Keywords

Acoustic devices; nanotechnology; surface acoustic waves; ultrafast optics

Ask authors/readers for more resources

The use of femtosecond laser pulses to impulsively excite thermal and mechanical transients in matter has led, in the last years, to the development of picosecond acoustics. Recently, the pump-probe approach has been applied to nanoengineered materials to optically generate and detect acoustic waves in the gigahertz-terahertz frequency range. In this paper, we review the latest advances on ultrafast generation and detection of thermal gradients and pseudo-surface acoustic waves in 2-D lattices of metallic nanostructures. Comparing the experimental findings to the numeric analysis of the full thermomechanical problem, these materials emerge as model systems to investigate both the mechanical and thermal energy transfer at the nanoscale. The sensitivity of the technique to the nanostructure mass and shape variations, coupled with the phononic crystal properties of the lattices, opens the way to a variety of applications ranging from hypersonic waveguiding to mass sensors with femtosecond time resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available