4.7 Article

A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band

Journal

ACTA GEOTECHNICA
Volume 8, Issue 5, Pages 465-480

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11440-013-0210-2

Keywords

Discrete element method; Homogenization; Lattice Boltzmann method; Micromechanics of granular materials; Microstructure; Strain localization

Funding

  1. Geosciences Research Program of the U.S. Department of Energy [DE-FG02-08ER15980]
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

Ask authors/readers for more resources

This paper presents a multiscale analysis of a dilatant shear band using a three-dimensional discrete element method and a lattice Boltzmann/finite element hybrid scheme. In particular, three-dimensional simple shear tests are conducted via the discrete element method. A spatial homogenization is performed to recover the macroscopic stress from the micro-mechanical force chains. The pore geometries of the shear band and host matrix are quantitatively evaluated through morphology analyses and lattice Boltzmann/finite element flow simulations. Results from the discrete element simulations imply that grain sliding and rotation occur predominately with the shear band. These granular motions lead to dilation of pore space inside the shear band and increases in local permeability. While considerable anisotropy in the contact fabric is observed with the shear band, anisotropy of the permeability is, at most, modest in the assemblies composed of spherical grains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available