4.5 Review

Cartilage homeostasis in health and rheumatic diseases

Journal

ARTHRITIS RESEARCH & THERAPY
Volume 11, Issue 3, Pages -

Publisher

BMC
DOI: 10.1186/ar2592

Keywords

-

Categories

Funding

  1. National Institutes of Health (NIH) (Bethesda, MD, USA) [AG022021, GM066882]
  2. Arthritis Foundation
  3. Rizzoli Institute
  4. Carisbo Foundation of Bologna
  5. Rientro dei Cervelli award
  6. MAIN EU FPVI Network of Excellence
  7. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM066882] Funding Source: NIH RePORTER
  8. NATIONAL INSTITUTE ON AGING [R01AG022021, R56AG022021] Funding Source: NIH RePORTER

Ask authors/readers for more resources

As the cellular component of articular cartilage, chondrocytes are responsible for maintaining in a low-turnover state the unique composition and organization of the matrix that was determined during embryonic and postnatal development. In joint diseases, cartilage homeostasis is disrupted by mechanisms that are driven by combinations of biological mediators that vary according to the disease process, including contributions from other joint tissues. In osteoarthritis (OA), biomechanical stimuli predominate with up-regulation of both catabolic and anabolic cytokines and recapitulation of developmental phenotypes, whereas in rheumatoid arthritis (RA), inflammation and catabolism drive cartilage loss. In vitro studies in chondrocytes have elucidated signaling pathways and transcription factors that orchestrate specific functions that promote cartilage damage in both OA and RA. Thus, understanding how the adult articular chondrocyte functions within its unique environment will aid in the development of rational strategies to protect cartilage from damage resulting from joint disease. This review will cover current knowledge about the specific cellular and biochemical mechanisms that regulate cartilage homeostasis and pathology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available