4.6 Article

Template-free ultraspray pyrolysis synthesis of N/Fe-doped carbon microspheres for oxygen reduction electrocatalysis

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 37, Pages 18920-18927

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta02570b

Keywords

-

Funding

  1. MIUR (Italy) under the Project NAMED-PEM (PRIN)
  2. Science Foundation Ireland [13/CDA/2213, 12/IP/1273]
  3. IAESTE Programme
  4. Science Foundation Ireland (SFI) [13/CDA/2213, 12/IP/1273] Funding Source: Science Foundation Ireland (SFI)

Ask authors/readers for more resources

Ultrasonic spray pyrolysis was used in a continuous flow apparatus for the template-free synthesis of iron- and nitrogen-doped porous carbon materials. Solutions of glucose, histidine and Fe(CH3COO)(2) were nebulized and pyrolyzed yielding carbon microspheres. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Focused Ion Beam (FIB) milling revealed that microspheres initially possess empty cores and a smooth shell. Further annealing leads to a collapse of this shell, and formation of porous microspheres with high roughness and iron-rich aggregates. X-ray Diffraction (XRD) and Photoelectron Spectroscopy (XPS) were used to investigate bulk and surface chemistry: microspheres were found to undergo graphitization; Fe and Fe3C particles form and become encapsulated within the carbon phase, while the nitrogen present in the precursor solution results in the formation of pyridinic/ pyrrolic N-centers. The microspheres were tested as electrocatalysts for the oxygen reduction reaction (ORR) in acidic solution. Polarization curves using a Rotating Disk Electrode (RDE) yielded electrocatalytic behavior, and the number of exchanged electrons n = 3.7 +/- 0.2 calculated from Koutecky-Levich plots suggests that direct formation of H2O is the preferred ORR mechanism. These results indicate that this synthetic approach offers a simple and scalable strategy for the preparation of electrode materials for polymer electrolyte membrane fuel cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available