4.2 Article

Improved Security Detection Strategy in Quantum Secure Direct Communication Protocol Based on Four-Particle Green-Horne-Zeilinger State

Publisher

VERLAG Z NATURFORSCH
DOI: 10.5560/ZNA.2012-0029

Keywords

Quantum Secure Direct Communication Protocol; Dense Coding; Four-Particle GHZ State; Eavesdropping Detection

Funding

  1. National Natural Science Foundation of China [61100205]

Ask authors/readers for more resources

To enhance the efficiency of eavesdropping detection in the quantum secure direct communication protocol, an improved quantum secure direct communication protocol based on a four-particle Green-Horne-Zeilinger (GHZ) state is presented. In the protocol, the four-particle GHZ state is used to detect eavesdroppers, and quantum dense coding is used to encode the message. In the security analysis, the method of entropy theory is introduced, and two detection strategies are compared quantitatively by using the constraint between the information that the eavesdroppers can obtain and the interference that has been introduced. If the eavesdropper wants to obtain all the information, the detection rate of the quantum secure direct communication using an Einstein-Podolsky-Rosen (EPR) pair block will be 50% and the detection rate of the presented protocol will be 87%. At last, the security of the proposed protocol is discussed. The analysis results indicate that the protocol proposed is more secure than the others.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available