4.2 Article

An improved short-lived fluorescent protein transcriptional reporter for Saccharomyces cerevisiae

Journal

YEAST
Volume 29, Issue 12, Pages 519-530

Publisher

WILEY
DOI: 10.1002/yea.2932

Keywords

reporter genes; green fluorescent protein; N-end rule pathway; pheromone-induced transcription; galactose-regulated transcription

Funding

  1. National Institutes of Health (NIH) [GM 079271, GM 084071]

Ask authors/readers for more resources

Ideal reporter genes for temporal transcription programmes have short half-lives that restrict their detection to the window in which their transcripts are present and translated. In an effort to meet this criterion for reporters of transcription in individual living cells, we adapted the ubiquitin fusion strategy for programmable N-end rule degradation to generate an N-degron version of green fluorescent protein (GFP) with a half-life of similar to 7?min. The GFP variant we used here (designated GFP*) has excellent fluorescence brightness and maturation properties, which make the destabilized reporter well suited for tracking the induction and attenuation kinetics of gene expression in living cells. These attributes are illustrated by its ability to track galactose- and pheromone-induced transcription in S. cerevisiae. We further show that the fluorescence measurements using the short-lived N-degron GFP* reporter gene accurately predict the transient mRNA profile of the prototypical pheromone-induced FUS1 gene. Copyright (c) 2012 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available