4.3 Article

Pig islet xenograft rejection in a mouse model with an established human immune system

Journal

XENOTRANSPLANTATION
Volume 15, Issue 2, Pages 129-135

Publisher

WILEY
DOI: 10.1111/j.1399-3089.2008.00450.x

Keywords

humanized mouse model; islet; pig; xenotransplantation

Funding

  1. NIAID NIH HHS [P01 AI 045897] Funding Source: Medline
  2. NIDDK NIH HHS [P30 DK36836] Funding Source: Medline

Ask authors/readers for more resources

Background: Xenotransplantation from pigs provides a potential solution to the severe shortage of human pancreata, but strong immunological rejection prevents its clinical application. A better understanding of the human immune response to pig islets would help develop effective strategies for preventing graft rejection. Methods: We assessed pig islet rejection by human immune cells in humanized mice with a functional human immune system. Humanized mice were prepared by transplantation of human fetal thymus/liver tissues and CD34(+) fetal liver cells into immunodeficient mice. Islet xenograft survival/rejection was determined by histological analysis of the grafts and measurement of porcine C-peptide in the sera of the recipients. Results: In untreated humanized mice, adult pig islets were completely rejected by 4 weeks. These mice showed no detectable porcine C-peptide in the sera, and severe intra-graft infiltration by human T cells, macrophages, and B cells, as well as deposition of human antibodies. Pig islet rejection was prevented by human T-cell depletion prior to islet xenotransplantation. Islet xenografts harvested from T-cell-depleted humanized mice were functional, and showed no human cell infiltration or antibody deposition. Conclusions: Pig islet rejection in humanized mice is largely T-cell-dependent, which is consistent with previous observations in non-human primates. These humanized mice provide a useful model for the study of human xenoimmune responses in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available