4.5 Article

Nitrogen-converting communities in aerobic granules at different hydraulic retention times (HRTs) and operational modes

Journal

WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY
Volume 31, Issue 1, Pages 75-83

Publisher

SPRINGER
DOI: 10.1007/s11274-014-1766-1

Keywords

Hydraulic retention time (HRT); Bacterial activity; Anoxic/oxic mode; Aerobic granular sludge

Funding

  1. Polish National Science Center [N N523 423337, N N523 739440]

Ask authors/readers for more resources

This study determined how the activity and number of nitrogen-converting microorganisms varied with changes in hydraulic retention time (HRT) and the operating regime of aerobic granular sequencing batch reactors (GSBRs) treating high-nitrogen wastewater. Continuously aerated (O-mode) GSBRs were operated at HRTs of 10-, 13- and 19-h. Then the same reactors were operated at identical HRTs but the cycles started with an anoxic phase (A/O mode). To investigate the microbial communities, DNA- and RNA-based relative real-time PCR was used. In all experimental reactors ammonium was fully removed with a removal rate up to 75 mg N-NH4 (+)/(L center dot h), and nitrification efficiency was above 90 %. The efficiency of the removal of oxidized nitrogen forms decreased with the lengthening of HRT. The study found that variable oxic conditions (A/O mode) in the GSBR cycle stimulated the simultaneous activity of ammonium oxidizing bacteria (AOB), N2O-reducers, and Anammox bacteria in aerobic granules. With both modes, the activity of nitrogen-converting bacteria was highest with a 13-h HRT. Shortening HRT, resulted in higher chemical oxygen demand and nitrogen loadings, which favored the growth of Anammox microorganisms in granules and caused a decrease in the number of AOB. With all HRTs, the number of Anammox microorganisms was about 1.5-times higher in A/O mode than in O mode.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available