4.5 Article

Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea)

Journal

WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY
Volume 29, Issue 8, Pages 1361-1369

Publisher

SPRINGER
DOI: 10.1007/s11274-013-1299-z

Keywords

Himalayan soil; Mustard; PGPR; Phytase; Phosphorus; Rhizosphere

Funding

  1. DST-FIST grant
  2. ICAR-SRF
  3. Indian Council of Agriculture Research (ICAR)

Ask authors/readers for more resources

Phytase-producing bacteria (PPB) is being investigated as plant growth promoting rhizobacteria (PGPR) to improve the phosphorus (P) nutrition and growth of plants grown in soil with high phytate content. Phytate is dominant organic P forms in many soils and must be hydrolyzed to be available for plants. Indian mustard (Brassica juncea) is a plant with economic importance in agriculture and phytoremediation, therefore biotechnological tools to improve growth and environmental stress tolerance are needed. In this study, we isolated and characterized PPB from Himalayan soils and evaluated their effect on growth and P uptake by B. juncea under greenhouse conditions. Sixty five PPB were isolated and based on phytate hydrolysis, three efficient PPB were chosen and identified as Acromobacter sp. PB-01, Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13. Selected PPB showed ability to grow at wide range of pH, temperature and salt concentrations as well as to harbour diverse PGPR activities, such as: solubilization of insoluble Ca-phosphate (193-642 mu g ml(-1)), production of phytohormone indole acetic acid (5-39 mu g ml(-1)) and siderophore. Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13 showed 50 and 70 % inhibition of phytopathogen Rhizoctonia solani, respectively. Greenhouse potting assay also showed that the bacterization of B. juncea seeds with Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13 significantly increased the biomass and P content in 30 days old seedlings. This study reveals the potential of PPB as PGPR to improve the growth of B. juncea.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available