4.6 Article

New technologies to investigate the brain-gut axis

Journal

WORLD JOURNAL OF GASTROENTEROLOGY
Volume 15, Issue 2, Pages 182-191

Publisher

BAISHIDENG PUBLISHING GROUP INC
DOI: 10.3748/wjg.15.182

Keywords

Brain-gut axis; Central processing; Neuraxis; Neurophysiology

Funding

  1. Medical Research Council Career Establishment Award
  2. Rosetrces Trust

Ask authors/readers for more resources

Functional gastrointestinal disorders are commonly encountered in clinical practice, and pain is their commonest presenting symptom. In addition, patients with these disorders often demonstrate a heightened sensitivity to experimental visceral stimulation, termed visceral pain hypersensitivity that is likely to be important in their pathophysiology. Knowledge of how the brain processes sensory information from visceral structures is still in its infancy. However, our understanding has been propelled by technological imaging advances such as functional Magnetic Resonance Imaging, Positron Emission Tomography, Magnetoencephalography, and Electroencephalography (EEG). Numerous human studies have non-invasively demonstrated the complexity involved in functional pain processing, and highlighted a number of subcortical and cortical regions involved. This review will focus on the neurophysiological pathways (primary afferents, spinal and supraspinal transmission), brain-imaging techniques and the influence of endogenous and psychological processes in healthy controls and patients suffering from functional gastrointestinal disorders. Special attention will be paid to the newer EEG source analysis techniques. Understanding the phenotypic differences that determine an individual's response to injurious stimuli could be the key to understanding why some patients develop pain and hyperalgesia in response to inflammation/injury while others do not. For future studies, an integrated approach is required incorporating an individual's psychological, autonomic, neuroendocrine, neurophysiological, and genetic profile to define phenotypic traits that may be at greater risk of developing sensitised states in response to gut inflammation or injury. (c) 2009 The WJG Press and Baishideng. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available