4.6 Article

Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation

Journal

WIND ENERGY
Volume 18, Issue 10, Pages 1815-1838

Publisher

WILEY-BLACKWELL
DOI: 10.1002/we.1792

Keywords

wind turbine wake; wake model; self-similarity; turbulence; large-eddy simulation

Funding

  1. Directorate For Geosciences
  2. Div Atmospheric & Geospace Sciences [1357649] Funding Source: National Science Foundation

Ask authors/readers for more resources

Mean and turbulent properties of the wake generated by a single wind turbine are studied in this paper with a new large eddy simulation (LES) code, the wind turbine and turbulence simulator (WiTTS hereafter). WiTTS uses a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and actuator lines to simulate the effects of the rotating blades. WiTTS is first tested by simulating neutral boundary layers without and with a wind turbine and then used to study the common assumptions of self-similarity and axisymmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. We find that the wind velocity deficit generally remains self similarity to a Gaussian distribution in the horizontal. In the vertical, the Gaussian self-similarity is still valid in the upper part of the wake, but it breaks down in the region of the wake close to the ground. The horizontal expansion of the wake is always faster and greater than the vertical expansion under neutral stability due to wind shear and impact with the ground. Two modifications to existing equations for the mean velocity deficit and the maximum added turbulence intensity are proposed and successfully tested. The anisotropic wake expansion is taken into account in the modified model of the mean velocity deficit. Turbulent kinetic energy (TKE) budgets show that production and advection exceed dissipation and turbulent transport. The nacelle causes significant increase of every term in the TKE budget in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright (c) 2014 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available