4.6 Article

Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm

Journal

WIND ENERGY
Volume 17, Issue 8, Pages 1169-1178

Publisher

WILEY-BLACKWELL
DOI: 10.1002/we.1625

Keywords

wind farm; offshore; wake; power deficit; wind direction

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Fonds Quebecois de la Recherche sur la Nature et les Technologies
  3. EUDP WakeBench [64011-0308]
  4. EERA DTOC [282797]

Ask authors/readers for more resources

Accurately quantifying wind turbine wakes is a key aspect of wind farm economics in large wind farms. This paper introduces a new simulation post-processing method to address the wind direction uncertainty present in the measurements of the Horns Rev offshore wind farm. This new technique replaces the traditional simulations performed with the 10 min average wind direction by a weighted average of several simulations covering a wide span of directions. The weights are based on a normal distribution to account for the uncertainty from the yaw misalignment of the reference turbine, the spatial variability of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape of the power deficit in a single wake situation is improved. The robustness of the method is verified using the Jensen model, the Larsen model and Fuga, which are three different engineering wake models. The results indicate that the discrepancies between the traditional numerical simulations and power production data for narrow wind direction sectors are not caused by an inherent inaccuracy of the current wake models, but rather by the large wind direction uncertainty included in the dataset. The technique can potentially improve wind farm control algorithms and layout optimization because both applications require accurate wake predictions for narrow wind direction sectors. (C) 2013 The Authors. Wind Energy published by John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available