4.3 Article

Rates of anaerobic microbial metabolism in wetlands of divergent hydrology on a glacial landscape

Journal

WETLANDS
Volume 28, Issue 3, Pages 703-714

Publisher

SPRINGER
DOI: 10.1672/06-126.1

Keywords

anaerobic respiration; denitrification; freshwater wetlands; iron reduction; methanogenesis; sulfate reduction

Funding

  1. National Science Foundation [DEB 0072980, DEB 9810220, DEB 9701714]

Ask authors/readers for more resources

Biogeochemical transformations in wetlands impact water quality, nutrient transport across landscapes, and greenhouse gas exchanges with the atmosphere. This study examined anaerobic microbial respiration and methanogenesis in surficial sediments of six wetlands lying on glacial terrain in southwest Michigan, USA. Three of the wetlands were mainly groundwater-fed and three were mainly precipitation-fed. Ambient rates of denitrification, sulfate reduction, iron reduction, methanogenesis, and acetate turnover were measured at each wetland. Ambient denitrification rates were not detectable in any wetland, but denitrifying enzyme activity, measured in two wetlands, indicated that the potential to remove nitrate was higher in a groundwater-fed wetland. Iron reduction was measurable mainly in precipitation-fed wetlands while sulfate reduction was only measurable in the groundwater-fed wetlands. Methanogenesis was measurable in all wetlands, with no differences between wetlands with contrasting water sources, indicating that methanogenesis is important regardless of water source. Acetate turnover rates, which reflect total anaerobic respiration and methanogenesis, were higher in the groundwater-fed wetlands and proportional to the sum of the individual carbon mineralization rates across all wetlands. Even though there was substantial variation in the process rates among these wetlands, the general patterns indicate that water source influences the biogeochemical function of wetlands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available