4.6 Article

Unsupervised Eye Blink Artifact Denoising of EEG Data with Modified Multiscale Sample Entropy, Kurtosis, and Wavelet-ICA

Journal

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Volume 19, Issue 1, Pages 158-165

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2014.2333010

Keywords

Artifact removal; biorthogonal wavelet; electroencephalogram (EEG); independent component analysis (ICA); kurtosis; modified multiscale sample entropy (mMSE)

Funding

  1. Strengthening Communities Initiative (SCI) Capacity Building Grant

Ask authors/readers for more resources

Brain activities commonly recorded using the electroencephalogram (EEG) are contaminated with ocular artifacts. These activities can be suppressed using a robust independent component analysis (ICA) tool, but its efficiency relies on manual intervention to accurately identify the independent artifactual components. In this paper, we present a new unsupervised, robust, and computationally fast statistical algorithm that uses modified multiscale sample entropy (mMSE) and Kurtosis to automatically identify the independent eye blink artifactual components, and subsequently denoise these components using biorthogonal wavelet decomposition. A 95% two-sided confidence interval of the mean is used to determine the threshold for Kurtosis and mMSE to identify the blink related components in the ICA decomposed data. The algorithm preserves the persistent neural activity in the independent components and removes only the artifactual activity. Results have shown improved performance in the reconstructed EEG signals using the proposed unsupervised algorithm in terms of mutual information, correlation coefficient, and spectral coherence in comparison with conventional zeroing-ICA and wavelet enhanced ICA artifact removal techniques. The algorithm achieves an average sensitivity of 90% and an average specificity of 98%, with average execution time for the datasets (N = 7) of 0.06 s (SD = 0.021) compared to the conventional wICA requiring 0.1078 s (SD = 0.004). The proposed algorithm neither requires manual identification for artifactual components nor additional electrooculographic channel. The algorithm was tested for 12 channels, but might be useful for dense EEG systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available