4.2 Article

Experimental Dynamical Seasonal Forecasts of Tropical Cyclone Activity at IRI

Journal

WEATHER AND FORECASTING
Volume 24, Issue 2, Pages 472-491

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008WAF2007099.1

Keywords

-

Funding

  1. National Oceanic and Atmospheric Administration [NA05OAR431 1004]

Ask authors/readers for more resources

The International Research Institute for Climate and Society (IRI) has been issuing experimental seasonal tropical cyclone activity forecasts for several ocean basins since early 2003. In this paper the method used to obtain these forecasts is described and the forecast performance is evaluated. The forecasts are based on tropical cyclone-like features detected and tracked in a low-resolution climate model, namely ECHAM4.5. The simulation skill of the model using historical observed sea surface temperatures (SSTs) over several decades, as well as with SST anomalies persisted from the previous month's observations, is discussed. These simulation skills are compared with skills of purely statistically based hindcasts using as predictors recently observed SSTs. For the recent 6-yr period during which real-time forecasts have been made, the skill of the raw model output is compared with that of the subjectively modified probabilistic forecasts actually issued. Despite variations from one basin to another, the levels of hindcast skill for the dynamical and statistical forecast approaches are found, overall, to be approximately equivalent at fairly modest but statistically significant levels. The dynamical forecasts require statistical postprossessing (calibration) to be competitive with, and in some circumstances superior to, the statistical models. Skill levels decrease only slowly with increasing lead time up to 2-3 months. During the recent period of real-time forecasts, the issued forecasts have had higher probabilistic skill than the raw model output, due to the forecasters' subjective elimination of the overconfidence'' bias in the model's forecasts. Prospects for the future improvement of dynamical tropical cyclone prediction are considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available