4.7 Article Proceedings Paper

Erosion-corrosion performance of high-Cr cast iron alloys in flowing liquid-solid slurries

Journal

WEAR
Volume 267, Issue 11, Pages 2039-2047

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2009.08.007

Keywords

Erosion-corrosion; High-alloyed cast irons; Coriolis test

Ask authors/readers for more resources

In many slurry transportation systems, such as in FGD (Flue Gas Desulphurization) and chemical processing applications, corrosion and erosion are the two main mechanisms of material degradation of the pump wet-end components including pump casing, impeller and liners. The performance of a selected material is mostly dependent upon its relative corrosion and erosion resistance to the service environment. In these cases erosion, corrosion and the related synergistic effects can be very complicated since they are affected by numerous factors including solid and slurry properties, chemical contents, hydraulic conditions and temperatures. In this experimental study, sliding Coriolis erosion testing has been performed with various corrosion factors such as pH value, chlorides content and temperature to evaluate the erosion-corrosion resistance of some high-alloyed white cast irons containing different levels of chromium and other elements. Optical microscope and SEM-EDS have also been used to examine microstructure and surface conditions of tested materials. Results indicated that material loss due to corrosion factors increased as acidity-chlorides and temperature increased. At relatively high corrosion intensity, the white cast irons with higher alloy content (especially chromium) clearly showed improved corrosion resistance and combined erosion-corrosion resistance over those with lower alloy content. Under certain corrosion and hydraulic conditions, particle size is perhaps the single most influential factor on erosion-corrosion rate of the high-Cr cast iron alloys. Relatively large particles are much more effective than small ones at removing both the corroded surface layer and the fresh material, causing substantially higher rate of material loss. Some other related factors have also been addressed. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available