4.7 Article Proceedings Paper

Influence of surface microstructure on the sliding friction of plantar skin against hard substrates

Journal

WEAR
Volume 267, Issue 5-8, Pages 1281-1288

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2008.12.053

Keywords

Plantar skin; Wet sliding friction; Surface microstructure; Adhesion and deformation; Lubrication

Ask authors/readers for more resources

This study investigated how the sliding friction coefficients of wet foot skin depend on the microscopic surface properties of contacted hard substrates. Fourteen subjects conducted repeated slip experiments with one foot on each of 28 different wet surfaces. The friction and normal forces transmitted to the substrates were measured using a tri-axial force plate, and coefficients of friction were determined over periods of stationary sliding. The surface structures of the substrates, characterised by an optical 3D profilometer, varied from roughness asperities in the range of micrometers to macroscopic surface elements in the range of millimetres. The analysis of the load dependence of the skin friction behaviour based on a two-term model provided information on the adhesion and deformation components of friction. Both adhesion and deformation were found to increase with the surface roughness of the substrates. Adhesion mechanisms seemed to predominate on smooth surfaces showing low friction coefficients (<0.3), while the contributions due to skin deformations were found to be up to 0.4 on rough surfaces with high friction coefficients (>0.5). Independent of friction measurements, the analysis of the surface microstructure of the substrates indicated that ploughing as a skin deformation mechanism could contribute around 50% to the deformation component of friction. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available