4.5 Article

Microbial diversity in biofilms on water distribution pipes of different materials

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 61, Issue 1, Pages 163-171

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2010.813

Keywords

biofilm; drinking water; microbial community; pipe material

Funding

  1. Pusan National University

Ask authors/readers for more resources

The effects of pipe materials on biofilm formation potential (BFP) and microbial communities in biofilms were analyzed. Pipe coupons made of six different materials (CU, copper; CP, chlorinated poly vinyl chloride; PB, polybutylene; PE, polyethylene; SS, stainless steel; ST, steel coated with zinc) were incubated in drinking water, mixed water (inoculated with 10% (v/v) of river water) and drinking water inoculated with Escherichia coli JM109 (E. coli), respectively. The highest BFPs were observed from steel pipes, SS and ST, while CU showed the lowest BFP values. Of the plastic materials, the BFP of CP in drinking water (96 pg ATP/cm(2)) and mixed water (183 pg ATP/cm2) were comparable to those of CU, but the other plastic materials, PB and PE, displayed relatively high BFP. The Number of E. coli in the drinking water inoculated with cultures of E. coli strain showed similar trends with BFP values of the pipe coupons incubated in drinking water and mixed water. Molecular analysis of microbial communities indicated the presence of alpha- and beta-proteobacteria, actinobacteria and bacteroidetes in biofilm on the pipe materials. However, the DGGE profile of bacterial 16S rDNA fragments showed significant differences among different materials, suggesting that the pipe materials affect not only BFP but also microbial diversity. Some plastic materials, such as CP, would be suitable for plumbing, particularly for drinking water distribution pipes, due to its low BFP and little microbial diversity in biofilm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available