4.5 Article

The role of reactive oxygen species in Staphylococcus aureus photoinactivation by methylene blue

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 58, Issue 5, Pages 1047-1054

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2008.471

Keywords

hydroxyl radical scavenger; metachromism; methylene blue; photosensitization; singlet oxygen quenchers; Staphylococcus aureus

Ask authors/readers for more resources

Methylene blue (MB) has been shown to photoinduce the direct inactivation of Gram-positive bacteria Staphylococcus aureus (S. aureus) in water. We have investigated the mechanism of S. aureus photoinactivation conducting firstly sodium azide (reactive ion N-3(-)), as a good physical singlet oxygen quencher, then the amino acids tryptophan (Trp), as a non-specific singlet oxygen quencher and the mannitol, as an hydroxyl free radical scavenger. Inactivation of MB photosensitization is the antioxidants type dependent. When the bacteria was treated with MB (20 mu M) under light during 10 min of exposure, it was found that survival fraction had decreased dramatically to about 31.27 +/- 5.39%. The presence of sodium azide and Trp failed to shown any protection from the MB photodynamic activity. In the presence of mannitol, S. aureus could be protected, reaching a protection level of about 27%. It is possible that the photodynamic activity of MB occurred in part, via a Type I mechanism in which (OH)-O-center dot was produced. The interactions between MB and S. aureus were studied spectrophotometrically. This demonstrated that a metachromatic reaction took place between MB and S. aureus bacteria. Furthermore, S. aureus bacteria induced additional dimerization of MB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available