4.5 Review

Changes of microbial characteristics of retained sludge during low-temperature operation of an EGSB reactor for low-strength wastewater treatment

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 57, Issue 2, Pages 277-281

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2008.077

Keywords

EGSB; low strength wastewater; low temperature; methane fermentation; Methanospirillum; microbial structure

Ask authors/readers for more resources

In this study, a lab scale EGSB reactor was operated for 400 days to investigate the influence of temperature-decrease on the microbial characteristic of retained sludge. The EGSB reactor was started-up at 15 degrees C seeding with 20 degrees C-grown granular sludge. The influent COD of synthetic wastewater was set at 0.6-0.8 gCOD/L. The process-temperature was stepwise reduced from 15 degrees C to 5 degrees C during 400 days operation. Decrease of temperature of the reactor from 15 degrees C to 10 degrees C caused the decline of COD removal efficiency. However, continuous operation of the EGSB reactor led the efficient treatment of wastewater (70% of COD removal, 50% of methane recovery) at 10 degrees C. We confirmed that the both acetate-fed and hydrogen-fed methanogenic activities of retained sludge clearly increased under 15 to 20 degrees C. Changes of microbial profiles of methanogenic bacteria were analyzed by 16S rDNA-targeted DGGE analysis and cloning. It shows that genus Methanospirillum as hydrogen-utilizing methanogen proliferated due to low temperature operation of the reactor. On the other hand, genus Methanosaeta presented in abundance as acetoclastic-methanogen throughout the experiment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available