4.7 Article

Comparative analysis of formulations for conservative transport in porous media through sensitivity-based parameter calibration

Journal

WATER RESOURCES RESEARCH
Volume 49, Issue 9, Pages 5206-5220

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/wrcr.20395

Keywords

parameter calibration; global sensitivity analysis; polynomial chaos expansion; conservative transport experiment; continuous time random walk

Funding

  1. University of Bologna
  2. Israel Science Foundation [221/11]

Ask authors/readers for more resources

We apply a general strategy based on Global Sensitivity Analysis (GSA) and model discrimination criteria to (a) calibrate the parameters embedded in competing models employed to interpret laboratory-scale tracer experiments, (b) rank these models, and (c) estimate the relative degree of likelihood of each model through a posterior probability weight. We consider a conservative transport experiment in a uniform porous medium. We apply GSA to three transport models, based on: the classical advection-dispersion equation (ADE), a dual-porosity (DP) formulation with mass transfer between mobile and immobile regions, and the Continuous Time Random Walk (CTRW) approach. GSA is performed through Polynomial Chaos Expansion of the governing equations, treating key model parameters as independent random variables. We show how this approach allows identification of (a) the relative importance of model-dependent parameters, and (b) the space-time locations, where the models are most sensitive to these parameters. GSA is then employed to assist parameter estimates within a Maximum Likelihood framework. Finally, formal model identification criteria are employed to (a) rank the alternative models, and (b) associate each model with a posterior probability weight for the specific case study. The GSA-based calibration of each model returns an acceptable approximation (remarkably accurate in the case of the CTRW model) of all available concentration data, with calibration being performed using minimum sets of observations corresponding to the most sensitive (space-time) locations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available