4.7 Article

Flow path depth is the main controller of mean base flow transit times in a mountainous catchment

Journal

WATER RESOURCES RESEARCH
Volume 48, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011WR010906

Keywords

-

Funding

  1. Nagoya University
  2. Japanese Ministry of Education and Culture for Science Research [20780110]
  3. Grants-in-Aid for Scientific Research [20780110, 23380081] Funding Source: KAKEN

Ask authors/readers for more resources

Transit time of discharge is a hydrological characteristic used in water resource management. Previous studies have demonstrated large spatial variation in the mean transit time (MTT) of stream base flow in meso-scale catchments. Various relationships between topography and MTT have been reported. Although it is generally assumed that base flow MTT is controlled by the depth of the hydrologically active layer that recharges a stream, this hypothesis has not been tested in field studies. This study confirmed that the depth of hydrologically active soil and bedrock controls spatial variation in MTT. The study used isotopic and geochemical tracer data gathered in the 4.27 km(2) Fudoji catchment, central Japan. The results, together with previously documented relationships between topography and MTT, indicate that the depth of the hydrologically active layer is sometimes, but not always, related to topography. A comprehensive understanding of the factors that control base flow production in mountainous catchments will require further study of the water flow path depths that recharge streams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available