4.7 Article

Synchrotron X-ray microtomography and interfacial partitioning tracer test measurements of NAPL-water interfacial areas

Journal

WATER RESOURCES RESEARCH
Volume 44, Issue 1, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006WR005517

Keywords

-

Funding

  1. NIEHS NIH HHS [P42 ES004940] Funding Source: Medline

Ask authors/readers for more resources

Interfacial areas between an immiscible organic liquid (NAPL), and water were measured for two natural porous media using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. The interfacial areas measured with the tracer tests were similar to previously reported values obtained with the method. The values were, however, significantly larger than those obtained from microtomography. Analysis of microtomography data collected before and after introduction of the interfacial tracer solution indicated that the surfactant tracer had minimal impact on fluid-phase configuration and interfacial areas under conditions associated with typical laboratory application. The disparity between the tracer test and microtomography values is attributed primarily to the inability of the microtomography method to resolve interfacial area associated with microscopic surface heterogeneity. This hypothesis is consistent with results recently reported for a comparison of microtomographic analysis and interfacial tracer tests conducted for an air-water system. The tracer test method provides a measure of effective, total (capillary and film) interfacial area, whereas microtomography can be used to determine separately both capillary-associated and film-associated interfacial areas. Both methods appear to provide useful information for given applications. A key to their effective use is recognizing the specific nature of the information provided by each, as well as associated limitations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available