4.7 Article

Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows

Journal

WATER RESOURCES MANAGEMENT
Volume 32, Issue 13, Pages 4201-4215

Publisher

SPRINGER
DOI: 10.1007/s11269-018-2038-x

Keywords

Multiple Models (MM); Two-level MM strategy; Monthly river flow records; Scatter of error residuals; Distressed Lake Urmia

Ask authors/readers for more resources

An investigation is presented in this paper to study the performance of Artificial Intelligence running Multiple Models (AIMM) using time series of river flows. This is a modelling strategy, which is formed by first running two Artificial Intelligence (AI) models: Support Vector Machine (SVM) and its hybrid with the Fire-Fly Algorithm (FFA) and they both form supervised learning at Level 1. The outputs of Level 1 models serve as inputs to another AI Model at Level 2. The AIMM strategy at Level 2 is run by Artificial Neural Network (MM-ANN) and this is compared with the Simple Averaging (MM-SA) of both inputs. The study of the performances of these models (SVM, SVM-FFA, MM-SA and MM-ANN) in the paper shows that the ability of SVM-FFA in matching observed values is significantly better than that of SVM and that of MM-ANN is considerably better than each SVM and/or SVM-FFA but the performances are deteriorated by using the MM-SA strategy. The results also show that the residuals of MM-ANN are less noisy than those shown by the models at Level 1 and those at Level 2 do not display any trend.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available