4.7 Article

A Dissipative Hydrological Model for the Hotan Oasis (DHMHO)

Journal

WATER RESOURCES MANAGEMENT
Volume 23, Issue 6, Pages 1183-1210

Publisher

SPRINGER
DOI: 10.1007/s11269-008-9322-0

Keywords

DHMHO; Moisture transformation and dissipation; Water balance; Hotan Oasis

Funding

  1. Natural Science Foundation of China [50779052]

Ask authors/readers for more resources

Various hydrological models have been designed to simulate moisture transformation in the water-cycle system between atmospheric water, surface water, soil water and groundwater. But few have been designed specially for oases in arid desert areas where the ecology and the environment are vulnerable because of unwise water-land resources utilization. In order to analyze the moisture transformation in the Hotan Oasis in the Taklimakan Desert in China, and hence to provide scientific references for the rational exploitation and allocation of the limited water-land resources, for the purpose of ensuring that the vulnerable ecology and environment there can be gradually improved and the social economy there can develop sustainably, a dissipative hydrological model for the Hotan Oasis (DHMHO) was developed. It was an outcome of years of systematic study on the moisture transformation in arid areas and on the water-land conditions in the Hotan Oasis. Based on statistics, DHMHO introduces two empirical equations whereby we dynamically calibrated model parameters with monthly data from year 1971 to 1995. Then the calibrated parameters were used to model the moisture movement from 1996 to 2003 and thereafter rationality check and error analysis were conducted. The error analysis results show that the absolute relative errors between simulated and observed groundwater depth values are almost (11 of 12 points) within 20%, and those in annual watershed outflow simulation are mostly (six of eight points) within 20% with an average annual Nash-Sutcliffe Efficiency Coefficient (NSEC) of 0.80. With DHMHO and IPCC assessment, we also simulated the moisture transformation and dissipation in the Hotan Oasis from the year 2011 to 2020. Results show details of the water resources in the Hotan Oasis in the next decade and hence are expected to provide scientific references for establishing rational exploitation and allocation policies on the local water-land resources in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available