4.8 Article

Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes

Journal

WATER RESEARCH
Volume 47, Issue 12, Pages 4074-4085

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2012.12.039

Keywords

Engineered nanomaterials; CoMoCat carbon nanotubes; HiPCo carbon nanotubes; Electric arc carbon nanotubes; Ecotoxicity; Aggregation; SWCNT

Funding

  1. National Science Foundation
  2. US Environmental Protection Agency [DBI-0830117]

Ask authors/readers for more resources

Carbon nanotubes (CNTs) are exciting new materials that have been intensively researched and are becoming increasingly used in consumer products. With rapid growth in production and use of CNTs in many applications, there is the potential for emissions to the environment and thus research is needed to assess the risks associated with CNTs in the environment. Here we show that commercial CNTs differ in their stability, photoactivity, metal leachate, and toxicity to freshwater algae. The behavior between raw and purified variants of the CNTs differs considerably; for example purified CNTs are generally more photoactive, producing singlet oxygen and superoxide, while raw CNTs show little or no photoactivity. Residual metal catalysts differ based on synthesis method used to prepare CNTs and thus may be comprised of elements with varying degrees of toxic potential. Influenced by pH and other constituents of the natural waters, our work shows that metals can leach out from all the commercial CNTs studied, even purified versions, albeit at different levels in many natural waters. As much as 10% of the total residual nickel leached from a purified CNT after 72 h. Aqueous concentrations of molybdenum leached from a different purified CNT were nearly 0.060 mg L-1 after 72 h. With little sample preparation, CNTs are dispersible in most freshwaters and stable for several days. Not all tested CNTs were toxic; for those CNTs that did induce toxicity we show that photoactivity, not metal leaching, contributes to the toxicity of commercial CNTs to freshwater algae, with growth rates significantly reduced by as much as 200%. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available