4.8 Article

Characterisation of organic matter in IX and PACl treated wastewater in relation to the fouling of a hydrophobic polypropylene membrane

Journal

WATER RESEARCH
Volume 46, Issue 16, Pages 5151-5164

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2012.06.054

Keywords

Organic fouling; Microfiltration; Liquid chromatography; Effluent organic matter; Ion exchange; Polyaluminium chlorohydrate

Funding

  1. ARC [LP0989554]
  2. Orica [LP0989554]
  3. Australian Research Council [LP0989554] Funding Source: Australian Research Council

Ask authors/readers for more resources

Extensive organic characterisation of a wastewater using liquid chromatography with a photodiode array and fluorescence spectroscopy (Method A), and UV254 and organic carbon detector (Method B) was undertaken, as well as with fluorescence excitation emission spectroscopy (EEM). Characterisation was performed on the wastewater before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, and following microfiltration of the wastewater and pre-treated wastewaters. Characterisation by EEM was unable to detect biopolymers within the humic rich wastewaters and was not subsequently used to characterise the MF permeates. IX treatment preferentially removed low molecular weight (MW) organic acids and neutrals, and moderate amounts of biopolymers in contrast to a previous report of no biopolymer removal with IX. PACl preferentially removed moderate MW humic and fulvic acids, and large amounts of biopolymers. PACl showed a great preference for removal of proteins from the biopolymer component in comparison to IX. An increase in the fluorescence response of tryptophan-like compounds in the biopolymer fraction following IX treatment suggests that low MW neutrals may influence the structure and/or inhibit aggregation of organic compounds. Fouling rates for IX and PACl treated wastewaters had high initial fouling rates that reduced to lower fouling rates with time, while the untreated Eastern Treatment Plant (ETP) wastewater displayed a consistent, high rate of fouling. The results for the IX and PACl treated wastewaters were consistent with the long-term fouling rate being determined by cake filtration while both pore constriction and cake filtration contributed to the higher initial fouling rates. Higher rejection of biopolymers was observed for PACl and IX waters compared to the untreated ETP water, suggesting increased adhesion of biopolymers to the membrane or cake layer may lead to the higher rejection. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available