4.8 Article

Geochemical changes in individual sediment grains during sequential arsenic extractions

Journal

WATER RESEARCH
Volume 44, Issue 19, Pages 5545-5555

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2010.06.002

Keywords

Groundwater arsenic contamination; Mobility; Sediment leaching; Re-precipitation; Micro-synchrotron X-ray fluorescence analysis (mu S-XRF); Vietnam

Funding

  1. LGFG Baden-Wurttemberg

Ask authors/readers for more resources

High concentrations of As in groundwater frequently occur throughout the world. The dissolved concentration, however, is not necessarily determined by the amount of As in the ambient sediment but rather by the partitioning of As between different minerals and the type of fixation. Sequential extractions are commonly applied to determine associations and binding forms of As in sediments. Due to the operational nature of the extracted fractions, however, the results do not provide insight into how and where precisely As is bound within mineral grains and no information about elemental associations or involved mineral phases can be gained. Furthermore, little is known about possible geochemical alterations that actually occur within a single grain during sequential extraction. Therefore, micro-synchrotron X-ray fluorescence analysis was applied to study the micro-scale distribution of As and other elements in single sediment grains. Arsenic was found to be mainly enriched in Fe oxy-hydroxide coatings along with other heavy metals resulting in high correlations. Phosphate leached 34-66% of As from the studied grains. The release of As in this leaching step was accompanied by the disappearance of correlations between As and Fe as well as by a higher Fe/As ratio compared to untreated samples. During the Fe-leaching step the coatings were largely dissolved leading to much lower concentrations of As and Fe. The correlation between As and Fe was preserved only in association with K, indicating the presence of both elements in silicate structures. Several distinctive features were observed such as the release of Fe, Mn and Cr during phosphate leaching as well as the lowering of mean K concentrations due to the Fe-leaching which indicates that not only target mineral phases were dissolved in these extraction steps. The importance of re-precipitation processes during sequential extraction was indicated by a consistently observed increase of the Fe/As ratio from the untreated to the Fe-leached samples. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available