4.8 Article

Mathematical model for analysis of recirculating vertical flow constructed wetlands

Journal

WATER RESEARCH
Volume 44, Issue 6, Pages 2010-2020

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2009.12.011

Keywords

Wastewater treatment; Recirculating vertical-flow constructed wetland; Mathematical model

Funding

  1. US-Israel Cooperative Development Research Program, Bureau for Economic Growth, Agriculture and Trade [C23-13]
  2. US Agency for international Development

Ask authors/readers for more resources

The recirculating vertical flow constructed wetland (RVFCW) was developed for the treatment of domestic wastewater (DWW). In this system, DWW is applied to a vertical flow bed through which it trickles into a reservoir located beneath the bed. It is then recirculated back to the root zone of the bed. In this study, a compartmental model was developed to simulate the RVFCW. The model, which addresses transport and removal kinetics of total suspended solids, 5-day biological oxygen demand and nitrogen, was fitted to kinetical results obtained from pilot field setups and a local sensitivity analysis was performed on the model parameters and operational conditions. This analysis showed that after 5 h of treatment water quality is affected more by stochastic events than by the model parameter values, emphasizing the stability of the RVFCW system to large variations in operational conditions. Effluent quality after 1 h of treatment, when the sensitivity analysis showed the parameter impacts to be largest, was compared to model predictions. The removal rate was found to be dependent on the recirculation rate. The predictions correlated well with experimental observations, leading to the conclusion that the proposed model is a satisfactory tool for studying RVFCWs. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available