4.8 Article

Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II)

Journal

WATER RESEARCH
Volume 43, Issue 9, Pages 2409-2418

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2009.03.002

Keywords

2,4,6-Trichlorophenol; Cu(II); Multi-walled carbon nanotubes; Adsorption

Funding

  1. National Natural Science Foundation of China [20707037]
  2. CSREES
  3. U.S. Department of Agriculture

Ask authors/readers for more resources

Adsorption equilibrium of 2,4,6-trichlorophenol (TCP) on multi-walled carbon nanotubes (MWCNTs) was investigated to explore the possibility of using MWCNTs for concentration, detection and removal of TCP from contaminated water. The adsorption of TCP on MWCNTs at pH 4 was nonlinear, reversible and best fit by a Polanyi-Manes model. Oxidation treatment increased surface area and introduced hydrophilic carboxylic groups to the defect sites of MWCNTs, hence increased the sorption of TCP and Cu(II) individually. Cu(II) suppressed the sorption of TCP on oxidized MWCNTs15A, but had little effect on as-grown MWCNTs15. TCP had no influence on Cu(II) sorption to either. The mechanisms of Cu(II) suppression effect on TCP adsorption are ascribed to the formation of surface complexes of Cu(II), which was verified by X-ray absorption spectroscopy. Cu(II) exerts a cross-linking effect of functional groups on adjacent tubes, creating a more tightly knit bundle and suppressing the condensation of TCP in the pore spaces between the tubes. The large hydration sphere around surface complexes of Cu(II) may also intrude or shield hydrophilic sites, leading to the crowding out of TCP around the Cu(II)-complexed sites. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available