4.8 Article

Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia

Journal

WATER RESEARCH
Volume 43, Issue 11, Pages 2936-2946

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2009.04.004

Keywords

Microbial fuel cell; Anodophilic bacteria; 1,2-Dichloroethane

Funding

  1. Flanders Research Foundation (FWO) [G.0172.05]
  2. EU Neptune [036845, SUSTDEV-2005-3.11.3.2]

Ask authors/readers for more resources

1,2-Dichloroethane (1,2-DCA) is a well-known recalcitrant groundwater contaminant. New environment-friendly approaches for the removal of 1,2-DCA that does not bring about volatilization of the compound are required. In this study, different anodophilic consortia enriched in microbial fuel cells (MFCs) operated under airtight conditions were shown to effectively degrade 1,2-DCA (up to 102 mg per liter reactor volume per day), while concomitantly generating a current. An anodophilic consortium previously enriched with acetate as the electron donor changed its composition at the rate of 48% per week and increased its richness (Rr) 3-fold, upon adapting to 1,2-DCA as the new electron donor. After being stable, during 1 month of operation, it removed up to 95% of the 1,2-DCA amount in the medium in the first 2 weeks, while converting 43 +/- 4% of electrons available from the removal to electricity. A natural consortium from a 1,2-DCA contaminated site changed its composition at the rate of 9% per week and increased its Rr 2-fold, upon adapting to the MFC anode conditions with 1,2-DCA as the electron donor. After being stable, during 1 month of operation, it removed up to 85% of the 1,2-DCA amount in the medium in the first 2 weeks and the coulombic efficiency was 25 +/- 4%. The operation of the MFCs under closed circuit conditions resulted in higher 1,2-DCA removal rates than the operation under open circuit conditions, indicating that bioelectrochemical. activities enhanced the removal of 1,2-DCA in the MFC anode. The production of ethylene glycol, acetate and carbon dioxide indicated that the anodophilic bacteria oxidatively metabolized 1,2-DCA, probably by means of a hydrolysis-based pathway. The results show that MFCs can be potentially used as a practically convenient technology for the biological removal of 1,2-DCA. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available