4.8 Article

Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters

Journal

WATER RESEARCH
Volume 43, Issue 1, Pages 157-165

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2008.09.032

Keywords

16S rRNA gene; Anaerobic digestion; Methanogenic community structure; Non-metric multidimensional scaling (NMDS); Real-time PCR

Funding

  1. Korea Ministry of Education (MOE) [2006-N-BI02-P-09]
  2. Korea Science and Engineering Foundation (KOSEF) [R11-2003-006]

Ask authors/readers for more resources

Quantitative changes in methanogenic community structures, associated with performance data, were investigated in three anaerobic batch digesters treating synthetic glucose medium, whey permeate, and liquefied sewage sludge. All digesters were initially seeded with anaerobic sludge obtained from a local municipal wastewater treatment plant. Dynamics of methanogenic populations were monitored, at order and family levels, using real-time PCR based on the 16S rRNA gene. The molecular monitoring revealed that, in each digester, the quantitative structure of methanogenic community varied continuously over treatment time and the variation corresponded well to the changes in chemical profiles. Biphasic production of methane, associated with successive increases in aceticlastic (mainly Methanosarcinaceae) and hydrogenotrophic (mainly Methanomicrobiales) methanogenic groups, was observed in each digester. This corresponded to the diauxic utilization of acetate and longer-chain volatile fatty acids (C-3-C-6), mainly propionate. Additionally, the non-metric multidimensional scaling (NMDS) analysis of the quantification results demonstrated that the community shift patterns in three digesters were totally different from each other. Considering that the operating conditions in all trials were identical except substrates, the differences in quantitative shift profiles were suggested to be due to the different substrate compositions. This implied that the composition of wastewater could affect the evolution of quantitative methanogenic community structure in an anaerobic process. Overall, our results suggested that more attention to quantitative as well as qualitative approaches on microbial communities is needed for fundamental understanding of anaerobic processes, particularly under dynamic or transitional conditions. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available