4.8 Article

NOM removal by adsorption onto granular ferric hydroxide: Equilibrium, kinetics, filter and regeneration studies

Journal

WATER RESEARCH
Volume 42, Issue 1-2, Pages 238-248

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2007.07.005

Keywords

granular ferric hydroxide; DOC isotherm; mass transfer coefficient; fixed-bed adsorption filter; breakthrough curve; regeneration

Ask authors/readers for more resources

Adsorption onto granular ferric hydroxide (GFH) with subsequent in-situ regeneration is studied as a new process for natural organic matter (NOM) removal from groundwater. Adsorbent equilibrium loadings of 10-30 mg DOC g(-1) GFH(-1) are obtained, whereas the non-adsorbable DOC fraction amounts to 1.5 mgL(-1) for all investigated groundwaters. The larger and UV-active NOM fractions (mainly fulvic acids) are well adsorbed while the smaller molecular fractions are poorly or not adsorbed. However, kinetic studies show that the smaller and medium-sized fulvic acids are removed first. The equilibrium is strongly dependent on pH but only weakly on ionic strength, pointing to ligand exchange as the dominant adsorption mechanism. With regard to NOM structure, prerequisites for adsorption onto GFH are both a minimum number of functional groups and a molecular size small enough to enter the GFH pores. NOM breakthrough curves are successfully simulated using the LDF model (homogeneous surface diffusion model (HSDM) with linear driving force approach for surface diffusion) and experimentally determined mass transfer coefficients. Regeneration of loaded GFH is possible either by use of NaOH or oxidatively by H2O2. The optimal quantities and concentrations are determined. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available