4.8 Article

Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in the Netherlands

Journal

WATER RESEARCH
Volume 42, Issue 10-11, Pages 2349-2360

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2008.01.001

Keywords

enhanced biological phosphorus removal; full-scale; phosphorus accumulating organisms; denitrifying phosphorus accumulating organisms; glycogen accumulating organisms

Ask authors/readers for more resources

The influence of operating and environmental conditions on the microbial populations of the enhanced biological phosphorus removal (EBPR) process at seven full-scale municipal activated sludge wastewater treatment plants (WWTPs) in The Netherlands was studied. Data from the selected WWTPs concerning process configuration, operating and environmental conditions were compiled. The EBPR activity from each plant was determined by execution of anaerobic-anoxic-aerobic batch tests using fresh activated sludge. Fractions of Accumulibacter as potential phosphorus accumulating organisms (PAO), and Competibacter, Defluviicoccus-related microorganisms and Sphingomonas as potential glycogen accumulating organisms (GAO) were quantified using fluorescence in situ hybridization (FISH). The relationships among plant process configurations, operating parameters, environmental conditions, EBPR activity and microbial populations fractions were evaluated using a statistical approach. A well-defined and operated denitrification stage and a higher mixed liquor pH value in the anaerobic stage were positively correlated with the occurrence of Accumulibacter. A well-defined denitrification stage also stimulated the development of denitrifying PAO (DPAO). A positive correlation was observed between Competibacter fractions and organic matter concentrations in the influent. Nevertheless, Competibacter did not cause a major effect on the EBPR performance. The observed Competibacter fractions were not in the range that would have led to EBPR deterioration. Likely, the low average sewerage temperature (12 +/- 2 degrees C) limited their proliferation. Defluuiicoccus-related microorganisms were seen only in negligible fractions in a few plants (< 0.1% as EUB), whereas Sphingomonas were not observed. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available