4.8 Article

Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms

Journal

WATER RESEARCH
Volume 42, Issue 6-7, Pages 1511-1522

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2007.10.031

Keywords

diethylenetriamine-functionalized adsorbent; copper and lead ion removal; selective adsorption; metal ion displacement; mechanisms

Ask authors/readers for more resources

The selective removal of copper and lead ions from aqueous solutions by diethylenetriamine (DETA)-functionalized polymeric adsorbent was investigated. The adsorbent was prepared by amination of the micro-beads synthesized from glycidyl methacrylate and trimethylolpropane trimethacrylate co-polymerization (denoted as P-DETA). In the single metal species system (only copper or lead ions present), P-DETA was found to adsorb copper ions or lead ions significantly (with a slightly higher adsorption uptake capacity for lead ions than copper ions). However, P-DETA displayed an excellent selectivity in the adsorption of copper ions over lead ions in the binary metal species system (with both copper and lead ions present). It was also found that initially (or previously) adsorbed lead ions on P-DETA were displaced, even completely, by subsequently adsorbed copper ions from the solution but the case was not vice versa. The greater electronegativity of copper ions than lead ions was identified as the major factor that caused P-DETA to selectively adsorb copper ions over lead ions during competitive adsorption in the binary metal species system. It was speculated that the displacement of already adsorbed lead ions on P-DETA by subsequently adsorbed copper ions was through an adjacent attachment and repulsion mechanism. P-DETA has been shown to have the potential to be used as an effective adsorbent for the removal as well as selective recovery of heavy metal ions in water or wastewater treatment. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available