4.8 Article

Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization

Journal

WATER RESEARCH
Volume 42, Issue 8-9, Pages 2278-2286

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2007.12.006

Keywords

alkalinity; coagulant aid; composite polyaluminum chloride (HPAC); enhanced coagulation; natural organic matter (NOM)

Ask authors/readers for more resources

Conventional coagulation is not an effective treatment option to remove natural organic matter (NOM) in water with high alkalinity/pH. For this type of water, enhanced coagulation is currently proposed as one of the available treatment options and is implemented by acidifying the raw water and applying increased doses of hydrolyzing coagulants. Both of these methods have some disadvantages such as increasing the corrosive tendency of water and increasing cost of treatment. In this paper, an improved version of enhanced coagulation through coagulant optimization to treat this kind of water is demonstrated. A novel coagulant, a composite polyaluminum chloride (HPAC), was developed with both the advantages of polyaluminum chloride (PACl) and the additive coagulant aids: PACl contains significant amounts of highly charged and stable polynuclear aluminum hydrolysis products, which is less affected by the pH of the raw water than traditional coagulants (alum and ferric salts); the additives can enhance both the charge neutralization and bridging abilities of PACl. HPAC exhibited 30% more efficiency than alum and ferric salts in dissolved organic carbon (DOC) removal and was very effective in turbidity removal. This result was confirmed by pilot-scale testing, where particles and organic matter were removed synergistically with HPAC as coagulant by sequential water treatment steps including pre-ozonation, coagulation, flotation and sand filtration. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available