4.6 Article

Hexavalent Chromium Removal From Aqueous Solutions by Fe-Modified Peanut Husk

Journal

WATER AIR AND SOIL POLLUTION
Volume 224, Issue 9, Pages -

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11270-013-1654-6

Keywords

Chromium; Iron peanut husk; Adsorption; Kinetic; Isotherms; Thermodynamic parameters

Funding

  1. CONACyT [131174-Q]

Ask authors/readers for more resources

Cr(VI) adsorption from aqueous solutions on peanut husk modified with formaldehyde (PeH-F) and peanut husk modified with formaldehyde and Fe (PeH-FFe) was evaluated as a function of shaking time, initial pH, chromium concentration, and temperature. Results showed that the Cr(VI) is preferentially adsorbed by PeH-FFe at pH 2 than pH 6. It also was found that the chromate equilibrium sorption capacity for PeH-FFe is at least six times higher than for PeH-F. The optimum pH to remove chromium is 2 for both materials; however, PeH-FFe has a higher efficiency for the chromium removal. Finally, Cr(VI) adsorption also depends on chromium concentration and temperature. The adsorption data as a function of concentration obey Linear, Freundlich, and Langmuir isotherms at pH 2 and 6. The Cr(VI) maximum capacity of PeH-FFe at pH 2 was 33.11 mg Cr(VI)/g, slightly higher than that at pH 6 (31.75 mg Cr(VI)/g). The linear isotherm shows that the pH affect the Cr(VI) distribution into the aqueous/solid phases. The negative value of Delta H-circle and positive values of Delta G(circle) indicate that the chromium adsorption process is an exothermic and non-spontaneous process. The characterization of the peanut husk modified with formaldehyde and peanut husk modified with formaldehyde and Fe by scanning electron microscopy, Raman, and IR spectroscopies as well as the textural characteristics of the noliving biomasses were also considered in this work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available