4.6 Article

Plant Responses to Arsenic: the Role of Nitric Oxide

Journal

WATER AIR AND SOIL POLLUTION
Volume 224, Issue 9, Pages -

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11270-013-1660-8

Keywords

Antioxidants; Toxicity; Phytochelatins; Cellular Signaling; Sulfate Uptake

Ask authors/readers for more resources

Arsenic (As) toxicity and the effects of nitric oxide (NO), supplied as sodium nitroprusside (SNP), were analyzed in Pistia stratiotes. The plants, which were grown in nutrient solution at pH 6.5, were exposed to four treatments for 24 h: control; SNP (0.1 mg L-1); As (1.5 mg L-1); and As + SNP (1.5 and 0.1 mg L-1). As accumulated primarily in the roots, indicating the low translocation factor of P. stratiotes. The As accumulation triggered a series of changes with increasing production of reactive oxygen intermediates and damage to cell membranes. The application of SNP was able to mitigate the harmful effects of As. This attenuation was probably due to the action of the SNP as an antioxidant, reducing the superoxide anion concentration, and as a signaling agent. Acting as a signal transducer, SNP increased the activity of enzymatic antioxidants (POX, CAT, and APX) in the leaves and stimulated the entire phytochelatins biosynthetic pathway in the roots (increased sulfate uptake and synthesis of amino acids, non-proteinthiols, and phytochelatins). The As also stimulated the phytochelatins biosynthesis, but this effect was limited, probably because plants exposed only to pollutant showed small increments in the sulfate uptake. Thus, NO also may be involved in gene regulation of sulfate carriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available