4.6 Article

Generating optimal drawings of physically realizable symbol maps with integer programming

Journal

VISUAL COMPUTER
Volume 28, Issue 10, Pages 1015-1026

Publisher

SPRINGER
DOI: 10.1007/s00371-012-0727-7

Keywords

Visualization; Cartography; Computational geometry; Integer linear programming

Funding

  1. CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) [830510/1999-0]
  2. CNPq [483177/2009-1, 473867/2010-9, 301732/2007-8, 472504/2007-0]
  3. FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo) [07/52015-0]
  4. FAEPEX/UNICAMP
  5. FAPESP [07/52015-0]

Ask authors/readers for more resources

Proportional symbol maps are a tool often used by cartographers and geoscience professionals to visualize geopositioned data associated with events and demographic statistics, such as earthquakes and population counts. Symbols are placed at specific locations on a map, and their areas are scaled to become proportional to the magnitudes of the data points they represent. We focus specifically on creating physically realizable drawings of symbols-opaque disks, in our case-by maximizing two quality metrics: the total and the minimum length of their visible borders. As these two maximization problems have been proven to be NP-hard, we provide integer programming formulations for their solution, along with decomposition techniques designed to decrease the size of input instances. Our computational experiments, which use real-life data sets, demonstrate the effectiveness of our approach and provide, for the first time, a number of optimal solutions to previously studied instances of this problem.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available